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IMPORTANCE Advances in Alzheimer disease (AD) have shifted research focus to earlier
disease stages, necessitating more scalable approaches to identify cognitively unimpaired
individuals with amyloid β (Aβ) pathology.

OBJECTIVE To assess the utility of plasma phosphorylated tau 217 (p-tau217) for classifying Aβ
status in cognitively unimpaired individuals, both as a stand-alone test and in a 2-step
approach where positive plasma results were confirmed using a second modality (Aβ positron
emission tomography [PET] or cerebrospinal fluid [CSF]).

DESIGN, SETTING, AND PARTICIPANTS This cross-sectional cohort study used data collected
between June 2009 and March 2024. We included 2916 cognitively unimpaired participants
from 12 international independent observational cohorts in the US, Europe, Australia, and
Canada with available plasma p-tau217 levels and CSF or PET Aβ biomarkers. Performance
comparisons between mass spectrometry and immunoassay-based p-tau217 measurements
were also performed (n = 964).

EXPOSURES Plasma p-tau217 levels measured by immunoassay.

MAIN OUTCOME AND MEASURES Aβ status, determined by CSF or Aβ PET biomarkers.

RESULTS Participants had a mean (SD) age of 66.9 (9.9) years; 971 (33.3%) were Aβ positive
by either CSF or PET, 1667 (57.2%) were women, and 1108 (38.1%) carried at least 1 APOE ε4
allele. As a stand-alone test, plasma p-tau217 achieved a positive predictive value (PPV) of
79% (95% CI, 74-84) and an overall accuracy of 81% (95% CI, 80-82). In a 2-step workflow,
the PPV and accuracy significantly increased to 91% (95% CI, 86-95). While this approach
required screening of 677 individuals with plasma p-tau217 to identify 100 Aβ-positive
individuals, compared to 536 participants when using PET alone, it reduced the need for PET
testing to 124. Immunoassays demonstrated comparable PPVs to mass spectrometry (80%
[95% CI, 74-86] vs 85% [95% CI, 81-90]; P = .12) but significantly lower overall accuracy
(82% [95% CI, 79-84]% vs 88 [95% CI, 86-90]; P < .001) and true Aβ-positive detection rate
(49% [95% CI, 43-55] vs 69% [95% CI, 64-75]; P < .001).

CONCLUSIONS AND RELEVANCE The findings highlight the potential of plasma p-tau217 as a
stand-alone test—or when used in a sequential 2-step approach alongside PET or CSF
testing—as a cost-effective, scalable, and minimally burdensome strategy for identifying
preclinical AD. Tailored screening workflows that incorporate p-tau217 can improve efficiency
in participant selection for preclinical AD trials and, in the future, help guide access to
disease-modifying treatments.
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A lzheimer disease (AD) is the leading cause of demen-
tia, accounting for 60% to 70% of the estimated 55 mil-
lion dementia cases worldwide.1 There is an urgent

need for effective treatments to halt or slow disease progres-
sion. Biologically, AD is characterized by the accumulation of
amyloid β (Aβ) plaques and tau tangles in the brain. Recent ad-
vances in antiamyloid immunotherapies have shown prom-
ise in slowing cognitive decline,2-4 and the first disease-
modifying treatments have now been approved in several
countries. However, these therapies offer only modest clini-
cal benefits in symptomatic AD, highlighting the need for fur-
ther improvements in AD treatment.5

Since Aβ pathology emerges decades before the onset of
symptoms,6 targeting the disease at earlier stages—when
pathology is present, but symptoms and neurodegeneration
remain minimal—could enhance the therapeutic benefits of
antiamyloid treatment.7,8 This hypothesis is supported by
post hoc analyses from recent trials, which indicate more
favorable outcomes in participants who were included at
earlier clinical and biological stages. Specifically, AD patients
at the mild cognitive impairment stage demonstrated better
responses than those with dementia.2 In theory, therapies
may be more effective in cognitively unimpaired older
adults with AD pathology. However, identifying cognitively
unimpaired individuals with early AD pathology remains
challenging. For instance, the Anti-Amyloid Treatment in
Asymptomatic AD (A4) study9 required more than 4400
people undergoing positron emission tomography (PET)
scans and more than 3 years to meet their recruitment goal
of 1150 Aβ-positive participants.

Plasma biomarkers offer a potential solution for identify-
ing cognitively unimpaired individuals with early AD pathol-
ogy, as they are more accessible and cost effective and less
burdensome than cerebrospinal fluid (CSF) or PET-based
biomarkers.10 Among the currently available plasma bio-
markers, plasma phosphorylated tau 217 (p-tau217) has con-
sistently shown the highest accuracy in detecting AD
pathology.11-17 While its association with AD pathology is well
established, its utility in cognitively unimpaired populations
is less clear.17-22 This distinction is critical, as the lower preva-
lence of AD pathology in cognitively unimpaired compared to
cognitively impaired populations reduces the positive predic-
tive value (PPV) of a diagnostic test.23 Additionally, the lower
burden of pathology in cognitively unimpaired individuals fur-
ther complicates its detection, even with highly accurate tests.
Moreover, many studies involving cognitively unimpaired in-
dividuals have been relatively small and relied on single as-
says measured in single batches, limiting the generalizability
of findings.17,19,24

This study aimed to assess the utility of plasma p-tau217
for classifying Aβ status in cognitively unimpaired partici-
pants, using data from multiple sites across continents. Our
objective was to evaluate the accuracy of plasma p-tau217, both
as a stand-alone biomarker and in a 2-step workflow where
positive plasma p-tau217 results were confirmed using PET or
CSF. An improved workflow could improve efficiency in par-
ticipant selection for preclinical AD trials, and help guide ac-
cess to disease-modifying treatments in the future.

Methods

Participants
We analyzed data from June 2009 to March 2024 on 2726 cog-
nitively unimpaired participants across 12 independent co-
horts in the US, Europe, Australia, and Canada: Amsterdam De-
mentia Cohort (ADC; n = 46),25 Alzheimer’s Disease
Neuroimaging Initiative (ADNI; n = 241), Australian Imaging
Biomarker and Lifestyle (AIBL; n = 180),26 Alzheimer and Fami-
lies (ALFA; n = 359),27 BioFINDER-1 (n = 105),28 BioFINDER-2
(n = 595),28 Knight Alzheimer Disease Research Center (ADRC;
n = 383), Mayo Clinic Study of Aging (MCSA; n = 363),29 Pre-
Symptomatic Evaluation of Experimental or Novel Treat-
ments for Alzheimer Disease (PREVENT-AD; n = 217),30 Sant
Pau Initiative on Neurodegeneration (SPIN; n = 171),31 Trans-
lational Biomarkers in Aging and Dementia (TRIAD; n = 103),32

and Wisconsin Registry for Alzheimer Prevention (WRAP;
n = 153).33 Of these, 1747 participants had both Aβ PET and AD
CSF biomarkers available. A detailed description of indi-
vidual cohorts can be found in eTable 1 in Supplement 1. All
study participants provided written informed consent, and lo-
cal institutional review boards approved the studies. This study
followed the Standards for Reporting of Diagnostic Accuracy
(STARD) reporting guideline.

Plasma P-tau 217
Methods for plasma p-tau217 quantification are summarized
in eTable 2 in Supplement 1. Two immunoassay platforms were
used in the primary analyses: Lilly MSD (ADC, ALFA,
BioFINDER-1, BioFINDER-2, Knight ADRC, PREVENT-AD, SPIN,
and WRAP) and Janssen R&D Simoa (AIBL, ADNI, MCSA, and
TRIAD). Additionally, mass spectrometry–based measures were
analyzed in 4 cohorts, measured at Washington University
(BioFINDER-2 and Knight ADRC) or C2N Diagnostics (ADNI and
WRAP) as previously described.18,22 Plasma p-tau217 levels
were log10 transformed and z scored within each cohort, based
on Aβ-negative participants older than 50 years, excluding ex-
treme outliers (<Q1 − 5IQR or >Q3 + 5IQR), to allow harmoni-
zation across cohorts.

Key Points
Question Can plasma phosphorylated tau 217 (p-tau217) reliably
identify amyloid β (Aβ) status in cognitively unimpaired individuals
for participant selection in preclinical Alzheimer disease (AD) trials
or for potential future use in clinical practice?

Findings In this cohort study of 2196 cognitively unimpaired
individuals, plasma p-tau217 demonstrated good accuracy in
predicting Aβ positivity. However, achieving a positive predictive
value above 90% required confirmatory testing with a
cerebrospinal fluid or positron emission tomography test.

Meaning Plasma p-tau217 is a useful stand-alone marker of Aβ
status in cognitively unimpaired individuals when moderate
accuracy suffices, but adding another test in a second step is
needed to achieve a high accuracy in this population.
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Aβ PET
Aβ PET acquisition and preprocessing methods for each co-
hort have been described (see eTable 3 in Supplement 1 for main
acquisition parameters). Four tracers were used for acquiring
Aβ PET: carbon 11–labeled Pittsburgh Compound B (11C-PiB;
Knight ADRC, MCSA, and WRAP), 18F-flutemetamol (ALFA,
BioFINDER-1, and BioFINDER-2), 18F-florbetapir (ADC, ADNI,
and Knight ADRC), and 18F-NAV4694 (AIBL, PREVENT-AD, and
TRIAD). Aβ PET positivity was determined through quantifi-
cation when possible or via visual assessment (ADC). Quanti-
tative results were standardized to the Centiloid scale34 for
comparability. In main analyses Aβ PET was assessed as posi-
tive if Centiloids were greater than 25 when quantification was
available or by visual assessment. This threshold was based
on previous studies supporting its utility to detect early signs
of aggregated Aβ pathology.35,36 This threshold is also congru-
ent with visual assessment,37 and it also showed good accu-
racy when compared to positivity by CSF AD in our sample de-
fined by cohort-specific thresholds (n = 1711; accuracy, 87%)
(eFigure 1A-B in Supplement 1). Sensitivity analyses used a
stricter threshold of Centiloids greater than 37, aligned with
the inclusion criteria of the AHEAD 3-45 study,38 and a lower
threshold greater than 12 based on previous studies suggest-
ing that it is the earliest sign of Aβ deposition.35,36

CSF Biomarkers
CSF biomarker collection and analysis methods have been de-
scribed previously. Details for each cohort are in eTable 4 in
Supplement 1. We assessed Aβ positivity using either the CSF
Aβ42/40 ratio (ALFA, BioFINDER-1, BioFINDER-2, Knight
ADRC, SPIN, TRIAD, and WRAP) or the p-tau181/Aβ42 ratio
(ADC, ADNI, and PREVENT-AD). Cohort-specific thresholds for
positivity were applied, as validated previously in each co-
hort.

Statistical Analysis
Plasma p-tau217 differences by Aβ status were assessed with
t test and Cohen d. Receiver operating characteristic curves
were used to compare the performance of plasma p-tau217 lev-
els against Aβ positivity. We performed 2 main set of analyses
using plasma p-tau217 alone or in combination with CSF or PET.

Predictive Accuracy of Plasma P-tau217
We evaluated the ability of plasma p-tau217 to predict Aβ posi-
tivity using 3 outcomes: Aβ positivity via either CSF or Aβ PET
(a single positive result suffices), Aβ positivity via CSF, and Aβ
positivity via PET (to overcome the different set of biomark-
ers available in the different cohorts). This approach allowed
robust evaluation of Aβ status across soluble (CSF) and depos-
ited (PET) biomarkers.

Logistic regression models were used to calculate prob-
abilities of Aβ positivity, with age as a covariate. We used age
as an additional variable to help our predictive model be-
cause is a very easy assessment to obtain, but we also tested
other models in the sensitivity analyses. Thresholds for p-
tau217 positivity were determined in a part of the sample (30%)
using the cutpointr package in R, optimizing sensitivity while
targeting high specificity (95% or 97.5%) to maximize PPVs.

Note that PPV = (sensitivity × prevalence) / {[sensitiv-
ity × prevalence] + [(1 − specificity) × (1 − prevalence)]}, and
thus it depends on prevalence. These thresholds were tested
in the rest of the sample (70%), assessing PPVs, negative pre-
dictive values (NPVs), accuracy, and the proportion of posi-
tive cases detected. Bootstrapping (1000 resamples) was used
to assess result variability using the boot package in R.

Utility of Adding CSF or PET
We assessed the added value of combining plasma p-tau217
with CSF or PET for predicting Aβ positivity through 2 sets of
analyses, using either CSF or PET as the reference standard.
In the first analysis, with CSF as the reference, we compared
3 strategies: plasma only, PET only, and a 2-step approach in
which only plasma-positive individuals underwent PET. In the
second analysis, using PET as the reference, we evaluated
plasma only, CSF only and a 2-step approach where plasma-
positive individuals received CSF testing. This design al-
lowed us to model 2 widely used clinical reference standards
for determining Aβ status.

Utility for Screening
Additionally, we conducted recruitment simulations for a hy-
pothetical clinical trial aiming to enroll 100 Aβ-positive cog-
nitively unimpaired participants. We compared 5 strategies:
CSF only, PET only, plasma only, and 2-step approaches in-
volving plasma followed by either CSF or PET. For each strat-
egy, we estimated (1) the number of individuals that would
need to be screened to recruit 100 true Aβ-positive partici-
pants, (2) the number of CSF or PET tests required, and (3) the
number of participants ultimately enrolled, including those in-
correctly classified as Aβ positive. All analyses were per-
formed separately using CSF and PET as the reference stan-
dard.

Main analyses were conducted using optimal 95% speci-
ficity thresholds, but we also simulated participants screened,
CSF/PET tests conducted, and total enrollees for different speci-
ficity thresholds (75%-97.5%). Costs were compared across sce-
narios using plasma:CSF:PET cost ratios of 1:4:16, 1:5:10, 1:6:
25, and 1:8:20, due to the large variability in costs among
centers.

Mass Spectrometry vs Immunoassay
Additionally, comparative analyses were conducted for par-
ticipants with both immunoassay- and mass spectrometry–
based p-tau217 measures. Thresholds were calculated in the
full dataset due to the smaller sample size.

Additional Analyses
Sensitivity analyses also explored models with different co-
variates (none, age only or age and APOE ε4 carriership), or dif-
ferent quantitative Aβ PET thresholds. We also tested differ-
ent specificity thresholds in the 2-step approach. Finally, we
also did sensitivity analyses by age ranges.

All statistical analyses were performed with R version 4.3.1
(R Foundation). Statistical comparisons were performed using
bootstrapping (n = 1000 resamples with replacement). 2-tailed
P values less than .05 were considered significant. Only one
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participant with extreme plasma p-tau217 levels (z score, 11.3)
was excluded, resulting in the final sample of 2916 partici-
pants.

Results
Plasma p-tau217 measurements and either Aβ PET or CSF AD
biomarkers were available from 2916 cognitively unimpaired
individuals. Cohort-specific participant characteristics are de-
tailed in eTable 5 in Supplement 1. Among these, 1747 partici-
pants had both Aβ PET and CSF AD biomarkers, 998 had only
Aβ PET, and 171 had only CSF AD biomarkers. Participants had
a mean (SD) age of 66.9 (9.9) years; 1667 (57.2%) were women
and 1249 (42.8) were men; 1108 (38.1%) carried at least 1 APOE
ε4 allele (Table). Aβ status was determined as positive if either
CSF (using cohort-specific thresholds) or PET (Centiloids >25
or visual assessment; eFigure 1A-B in Supplement 1)35,36 was
positive. If both measures were available, a positive result in
either was sufficient for positive classification. The preva-
lence of Aβ positivity was 33.3% (n = 971) in the whole sample
and 32.1% (n = 560) in individuals with both Aβ PET and CSF
AD biomarkers.

Detection of Aβ Status Using Plasma P-tau217
As expected, plasma p-tau217 levels were higher in partici-
pants assessed as Aβ positive (eFigure 2A in Supplement 1).
Plasma p-tau217, together with age, predicted Aβ positivity in
cognitively unimpaired individuals with an area under the
curve of 83% (95% CI, 81-85) (eFigure 2B in Supplement 1).

When determining an optimal cutoff yielding 95% speci-
ficity in the training set, the accuracy of the model was 81%
(95% CI, 80-82) with PET or CSF as the reference standard

(Figure 1A and B; eTable 6 in Supplement 1) and PPV was 79%
(95% CI, 74-84). However, plasma p-tau217 only identified 46%
of all Aβ-positive cases as defined by the reference standard.
Similar results were observed when CSF alone was used as the
reference standard (PPV, 79%; 95% CI, 74-85; accuracy 82%;
95% CI, 81-83; n = 1918) (Figure 1C) and when PET alone was
the reference standard (PPV, 76%; 95% CI, 70-81; accuracy 86;
95% CI, 85-87; n = 2745) (Figure 1D).

A more stringent cutoff, yielding 97.5% specificity,
achieved higher PPV (85%; 95% CI, 80-90), lower sensitivity
(35%; 95% CI, 27-43) but similar accuracy (80%; 95% CI, 78-
81) than the 95% specificity threshold. Other specificity thresh-
olds are presented in eFigure 1C in Supplement 1 showing that
only very high specificity thresholds (99.5%) could render PPVs
higher than 90%.

Enhanced Detection of Cognitively Unimpaired
Aβ-Positive Individuals Using a 2-Step Approach
Next, we aimed to investigate whether the clinical accuracy
could be improved by confirming the plasma p-tau217 results
with a second biomarker modality (ie, PET or CSF) in partici-
pants with a positive plasma p-tau217 result (Figure 2A). This
2-step approach was compared to scenarios using either PET
or CSF tests alone or plasma p-tau217 alone.

When Aβ PET was used to confirm the plasma p-tau217 test
and CSF was the reference standard (Figure 2B), the PPV was
81% (95% CI, 75-87) for plasma p-tau217 alone, 92% (95% CI,
90-94) for PET alone, and 99% (95% CI, 98-100) for the 2-step
approach (positive plasma p-tau217 followed by PET). In the
2-step approach, 73% of individuals with a positive p-tau217
test were also PET positive. Of all CSF-positive participants (ref-
erence), only 49% (95% CI, 41-57) were detected using plasma
p-tau217 alone, 61% (95% CI, 59-64) with PET alone, and 44%
(95% CI, 37-50) with the 2-step approach (eTable 7 in Supple-
ment 1).

We also tested the reversed approach, in which CSF was
used to confirm the plasma p-tau217 test and Aβ PET was the
reference standard (Figure 2C). Following this approach, PPVs
were 76% (95% CI, 68-83) for plasma alone, 62% (95% CI, 60-
63) for CSF alone, and 91% (95% CI, 86-95) for the 2-step ap-
proach (positive plasma p-tau217 followed by CSF). In this sce-
nario, 82% of plasma-positive cases were CSF positive. Plasma
p-tau217 alone detected 60% (95% CI, 50-67) of all PET-
positive participants (reference), CSF alone detected 93% (95%
CI, 91-94), and the 2-step approach detected 59% (95% CI, 50-
66) (eTable 7 in Supplement 1).

The primary advantage of the 2-step approach was a sig-
nificant reduction in false positives, from 44 (19.4% of the posi-
tives) with plasma alone to 2 (0.1% of the positives) with the
2-step model using CSF positivity as reference. From 46 (23.8%
of the positives) to 14 (8.8% of the positives) using PET posi-
tivity as reference (Figure 2D and E). Comparison of individu-
als’ characteristics selected by each approach is presented in
eFigure 3 in Supplement 1.

Implications for Preclinical AD Trials
We next evaluated how the different strategies would impact
recruitment for a hypothetical clinical trial aiming to enroll 100

Table. Sample Description

Characteristic
CSF or PET
(n = 2916)

CSF and PET
(n = 1747)

Age, mean (SD), y 66.9 (9.91) 66.3 (9.11)

Sex, No. (%)

Female 1667 (57.2) 1005 (57.5)

Male 1249 (42.8) 742 (42.5)

APOE ε4 carriers, No. (%) 1108 (38.1) 735 (42.1)

No.a 2908 1746

P-tau217, z score, mean (SD) 0.457 (1.36) 0.492 (1.39)

Aβ positive, No. (%)b 971 (33.3) 560 (32.1)

Aβ PET positive, No. (%) 826 (28.3) 355 (20.3)

No.a 2745 1747

Centiloids 13.1 (31.8) 11.3 (30.8)

No.a 2336 1711

CSF positive, No. (%) 542 (28.3) 531 (30.4)

No.a 1918 1747

Abbreviations: Aβ, amyloid β; CSF, cerebrospinal fluid; NA, not applicable;
p-tau217, phosphorylated tau 217; PET, positron emission tomography.
a Number of individuals for whom data were available in each respective

category.
b Aβ positivity, defined as Centiloid >25 or visual assessment, was determined

by either Aβ PET or CSF biomarker positivity.
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Figure 1. Plasma Phosphorylated Tau 217 (P-tau217) as a Stand-Alone Confirmatory Marker of Amyloid β (Aβ) Positivity
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Aβ-positive cognitively unimpaired participants. First, we es-
timated the number of individuals that would need to be
screened under each approach. Using CSF as the reference stan-
dard for Aβ status (30% positive), we found that 329 partici-

pants would need to be screened when CSF was used for
screening, 536 with amyloid PET alone, 677 with plasma p-
tau217 alone or plasma followed by CSF, and 760 with plasma
followed by PET (Figure 3A).

Figure 2. Comparison of Clinical Accuracy Between the 2-Step Approach, Plasma Only, and Cerebrospinal Fluid (CSF) or Positron Emission
Tomography (PET) Strategies
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phosphorylated tau 217; PPV, positive predictive value.
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We then assessed how many CSF or PET tests would be re-
quired under each strategy, focusing on the potential benefit
of using plasma p-tau217 as an initial screening step. Plasma-
based approaches substantially reduced the number of con-
firmatory tests needed: plasma followed by CSF required lum-
bar punctures in only 124 individuals, while plasma followed
by PET required just 139 PET scans. These figures were sig-
nificantly lower than the 329 CSF tests or 536 PET scans needed
when using CSF or PET alone, respectively (Figure 3B).

Finally, we evaluated how many participants would ulti-
mately be enrolled in the trial. Since neither plasma nor PET
perfectly identified CSF-positive individuals, some false posi-
tives were included in plasma- or PET-based strategies. The
plasma-only approach led to 24 additional participants being
enrolled, PET alone added 8, and plasma followed by PET
added just 1 extra participant, beyond the target of 100 Aβ-
positive cognitively unimpaired individuals (Figure 3C). Simi-
lar findings were observed when PET was used as the refer-
ence standard instead of CSF (Figures 3D-F).

We also explored how the different approaches would
translate into costs of recruitment using different plasma:
CSF:PET costs ratios (1:4:16, 1:5:10, 1:6:25, and 1:8:20) due
to the large cost differences between centers (eFigure 4 in
Supplement 1). In summary, all approaches were more eco-
nomic relative to Aβ PET alone for recruitment (saved when
using CSF: 46%-74%; plasma: 80%-92%; 2-step with CSF:
66%-85%). The plasma-only approaches were the cheapest
methods for recruitment in all cases, closely followed by the
2-step approach using plasma followed by CSF.

Comparison of Mass Spectrometry–
and Immunoassay-Based Plasma Measurements
Plasma ratios of p-tau217 to non–p-tau217 (termed %p-
tau217) as measured by mass spectrometry have been shown
to be superior to immunoassay-based p-tau217 tests12,15,39

and noninferior to US Food and Drug Administration–
approved CSF AD tests.18 However, immunoassay-based
methods require less complex infrastructure and can be

Figure 3. Implications of Different Recruitment Strategies for a Hypothetical Clinical Trial Enrolling 100 Amyloid β (Aβ)-Positive Participants
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The figure compares the impact of 5 recruitment strategies: positron emission
tomography (PET) only, cerebrospinal fluid (CSF) only, plasma only, a 2-step
approach using plasma followed by CSF, and a 2-step approach using plasma
followed by PET. Results are presented separately using CSF (A-C) or PET (D-F)
as the reference standard for Aβ positivity. The first column (A and D) shows the
number of individuals that would need to be initially screened under each
approach for achieving 100 Aβ-positive individuals. The second column (B and

E) shows the number of CSF or PET confirmatory tests required for each
approach. The third column (C and F) shows the number of individuals
ultimately included in the trial. Individuals who would be included but were Aβ
negative (ie, false positives) are shown in a lighter color. Plasma positivity was
determined using a threshold set at 95% specificity across all approaches.
P-tau217 indicates phosphorylated tau 217.
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automated, streamlining their use. Therefore, we performed
a head-to-head comparison in all the participants with
%p-tau217 measured mass spectrometry vs p-tau217 mea-
sured by immunoassay (n = 964, eTable 8 in Supplement 1).
Notably, both methods were measured with different assays
for different cohorts, so we z-transformed all p-tau217 lev-
els. The difference between Aβ-positive vs Aβ-negative
cases in 964 individuals was larger in mass spectrometry–
based %p-tau217 than for immunoassay-based p-tau217 (Co-
hen d, 1.47 vs Cohen d, 1.29, respectively; P < .001) (eFig-
ure 2C-E in Supplement 1). The mass spectrometry method
also had significantly higher overall accuracy (88% [95% CI,
86-90] vs 82% [95% CI, 79-84]; P < .001) and true
Aβ-positive detection rate (69% [95% CI, 64-75] vs 49%
[95% CI, 43-55]; P < .001), while PPVs were not significantly
different (85% [95% CI, 81-90] vs 80% [95% CI, 74-86];
P = .12) (Figure 4; eTable 9 in Supplement 1). Similar
results were obtained when studying BioFINDER-2 only
individuals, in which only 1 method was used for immuno-
assay and 1 for mass spectrometry (eTable 10 in Supple-
ment 1).

Sensitivity Analyses
Additional analyses incorporating both age and APOE ε4 car-
riership showed significantly improved accuracy (81% vs 83%)
and detection rates for Aβ-positive cases (46% vs 51%) (eFig-
ure 5 in Supplement 1), compared to using age alone. Find-
ings using alternative Aβ PET positivity thresholds are pre-
sented in eFigure 6 in Supplement 1. A lower threshold (more
sensitive; Centiloid >12) increased PPVs but reduced overall ac-

curacy and detection rates, while a higher threshold (more spe-
cific; Centiloid >37) had the opposite effect.

In the 2-step approach, we applied a more sensitive
plasma p-tau217 threshold (85% specificity) only when fol-
lowed by a CSF or PET test. The rationale was that less spe-
cific tests are suitable for screening, as more specific tests
can later confirm the presence of pathology. This strategy
increased the proportion of positive cases (55%-81% for 85%
specificity vs 44%-59% for 95% specificity threshold) while
maintaining high PPVs (81%-97% vs 91%-99%) (eFigure 7 in
Supplement 1). Similar to our previous analysis, using a
more sensitive plasma p-tau217 threshold increased the
number of CSF and PET tests performed (−57% for 75%
specificity vs −75% for 97.5% specificity threshold, com-
pared to using them with all individuals) and the final num-
ber of participants included in the trial (30% vs 6%) (eFig-
ure 8 in Supplement 1). Also, less participants required
plasma screening (17% for 75% specificity vs 131% for 97.5%
specificity threshold), but lower percentage of plasma-
positive cases were subsequently confirmed by CSF or PET
tests (61% vs 87%) (eFigure 8 in Supplement 1).

Sensitivity analyses restricted to plasma p-tau217 mea-
surements from a single assay and site (Eli Lilly, measured in
Lund University; n = 1670) showed improved accuracy (85%
vs 81%) and detection rates (56% vs 46%), although PPVs re-
mained similar (80% vs 79%) (eTable 11 in Supplement 1). PPVs
also increased with age (<60 years: 38% to ≥80 years: 93%),
while NPVs decreased with age (<60 years: 91% to ≥80 years:
66%), when using plasma p-tau217 levels as predictor of Aβ
positivity (eTable 12 in Supplement 1).

Figure 4. Comparison of Plasma Only as a Confirmatory Test for Prediction of Amyloid Positivity Using Mass Spectrometry
vs Highly Accurate Immunoassay

60 90 10080
Percentage

70

Statistics
PPV

Mass spectrometry

Immunoassay

Accuracy

Mass spectrometry

Immunoassay

Clinical accuracy by analytic techniqueA Proportion of Aβ-positive cases detectedB

0 8060 10040

Aβ-positive cases detected
20

69 31Mass spectrometry

49 51Immunoassay

An
al

yt
ic

 te
ch

ni
qu

e

Mass spectrometry

Analytic technique

Immunoassay

Cross tables by analytic techniqueC

Predictor
negative, No. (%)

Predictor
positive, No. (%)

Reference
negative, No. (%)

651 (67.5) 33 (3.4)

86 (8.9) 194 (20.1)Reference
positive, No. (%)

Predictor
negative, No. (%)

Predictor
positive, No. (%)

650 (67.4) 34 (3.5)

142 (14.7) 138 (14.3)

a

a

Clinical accuracy of plasma phosphorylated tau 217 measured by mass
spectrometry and immunoassay is compared for assessing amyloid β (Aβ)
positivity based on either cerebrospinal fluid (CSF) or positron emission
tomography (PET), using thresholds set at 95% specificity in the whole sample.
Dashed lines indicate the maximum values achievable by a perfect biomarker.
The percentage of positive individuals selected by plasma is shaded in the right
column. In the bar plots, individuals who would not be selected out of those

who were Aβ positive (ie, false-negative rate) are shown in a lighter color. Mass
spectrometry methods were all performed at Washington University or by C2N
Diagnostics, independently for each cohort. Immunoassay methods included Eli
Lilly and Janssen platforms. PPV indicates positive predictive value.
aStatistically significant differences (P < .05) in the specified statistic when
comparing immunoassay to mass spectrometry.

Research Original Investigation Plasma P-Tau217 to Identify Preclinical AD

E8 JAMA Neurology Published online September 15, 2025 (Reprinted) jamaneurology.com

Downloaded from jamanetwork.com by guest on 10/30/2025

https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2025.3217?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2025.3217
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2025.3217?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2025.3217
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2025.3217?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2025.3217
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2025.3217?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2025.3217
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2025.3217?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2025.3217
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2025.3217?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2025.3217
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2025.3217?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2025.3217
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2025.3217?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2025.3217
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2025.3217?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2025.3217
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2025.3217?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2025.3217
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2025.3217?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2025.3217
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2025.3217?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2025.3217
http://www.jamaneurology.com?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2025.3217


Discussion

The main finding of this cohort study is that plasma p-tau217 was
an effective marker for identifying Aβ positivity in cognitively
unimpaired individuals. When used alone, plasma p-tau217 cor-
rectly identified approximately 80% of Aβ-positive cases. A
2-step approach, involving confirmatory CSF or PET testing fol-
lowing a positive plasma p-tau217 result, enhanced the PPV to
greater than 95%, while maintaining high sensitivity. This strat-
egy reduced the need for PET or CSF testing by over 40%, com-
pared with a workflow that omits plasma screening. Compared
to immunoassay methods, a mass spectrometry–based p-
tau217 test, which might be less scalable, achieved somewhat
higher accuracy and detected more Aβ-positive individuals, but
PPVs were comparable between methods. These findings un-
derscore the clinical value of plasma p-tau217 as a tool for early
AD detection, with implications for secondary prevention trials
and future treatment programs when available.

From a clinical perspective, plasma p-tau217, in combina-
tion with brief cognitive assessment, may serve as an effective
screening tool in primary and secondary care, particularly in
clinical settings where access to PET imaging or lumbar punc-
ture is limited. Integration into clinical practice is currently con-
strained by the lack of approved treatments for asymptomatic
individuals. However, this landscape is expected to change sig-
nificantly as disease-targeting treatments become available for
preclinical AD. In anticipation of this shift, our findings have di-
rect ramifications for the design of preclinical AD trials, where
minimizing the inclusion of Aβ-negative participants is essen-
tial. The high PPVs observed in our study with plasma p-
tau217 are particularly relevant in these trial settings, whereas
a lower NPV—and the associated risk of missed Aβ-positive
cases—is less detrimental. Although PPVs in cognitively unim-
paired individuals were slightly lower than those reported in
symptomatic populations (ie, mild cognitive impairment or
dementia),18,22,40 this difference mainly reflects the lower Aβ
prevalence in cognitively unimpaired individuals, which is a key
determinant of PPV.41 To improve detection performance, we
evaluated more sensitive p-tau217 quantification methods. Con-
sistent with prior work,12,15,39 mass spectrometry improved sen-
sitivity by identifying additional Aβ-positive cases, although
PPVs remained comparable to those achieved with immunoas-
says. This highlights the need for complementary strategies to
reach higher certainty in plasma-positive cases.

In this regard, implementing a 2-step approach42 combin-
ing plasma screening with confirmatory CSF or PET testing
proved effective in reducing false positives without compro-
mising sensitivity. This approach may substantially reduce cost
and patient burden relative to testing all individuals with CSF
or PET. In contrast, relying solely on plasma p-tau217 without
confirmatory CSF or PET to achieve a PPV over 90% would re-
quire more stringent thresholds, which in turn would reduce
sensitivity. While ongoing efforts to standardize plasma col-
lection and analysis may improve sensitivity, this trade-off is
especially relevant in trials relying solely on plasma p-tau217
to detect preclinical AD, such as TRAILBLAZER-ALZ3
(NCT05026866) and TRAILRUNNER-ALZ3 (NCT06653153), and

in potential future clinical applications. The 2-step alterna-
tive strategy, as adopted in studies like AHEAD 3-45,38 pre-
serves high enrollment rates while mitigating false positive
risks. Ultimately, strategy selection should align with the in-
tervention’s risk profile: a 1-step approach may suffice for low-
risk, cost-effective treatments, whereas higher-risk or resource-
intensive therapies may warrant a 2-step approach to optimize
PPV. Tailoring plasma thresholds and selection strategies to
specific clinical or trial objectives is thus essential.

Our analyses also displayed differential performance be-
tween CSF and PET reference standards, likely due to their de-
tection of different phases of Aβ pathology. CSF Aβ biomark-
ers tend to become abnormal earlier than Aβ PET.43

Accordingly, CSF identified more true positives, while Aβ PET
exhibited a higher PPV. To better align PET classification with
CSF detection in early-stage populations,36 we applied a rela-
tively sensitive quantitative Aβ-PET threshold (25 Centiloids)
while being clinically relevant, consistent with prior
studies35,44,45 and supported by our own data (eFigure 1 in
Supplement 1).27 This threshold approximates traditional vi-
sual-read criteria for Aβ positivity.37 Sensitivity analyses con-
firmed that more stringent PET thresholds improved accu-
racy but reduced PPV, reflecting the impact of disease
prevalence on predictive metrics.

Strengths and Limitations
Previous studies in cognitively unimpaired populations have
often been limited by small sample sizes,46,47 with notable ex-
ceptions like the A4 and LEARN studies.48 Our study, draw-
ing from 12 independent cohorts, strengthens the generaliz-
ability of these findings and underscores the importance of
large-scale, population-representative plasma biomarker stud-
ies in early AD. As the field moves toward earlier detection and
intervention, cognitively unimpaired individuals will play an
increasingly central role in clinical trials and therapeutic
strategies.7 Thus, our results can help guide the design of fu-
ture trials and treatment protocols. Nonetheless, we acknowl-
edge several limitations. The use of multiple cohorts intro-
duced variability in biomarker measurements. To mitigate this,
we used harmonization methods, such as the Centiloid scale34

for PET, or using Aβ42 ratios with p-tau181 or Aβ40 for CSF to
account for variability in production and clearance rates49 and
applying cohort-specific thresholds consistent with clinical
practices. While plasma p-tau217 levels were harmonized using
cohort-specific z scores, a unified protocol, such as the
CentiMarker,50 may further enhance reproducibility. Further
work should be done for the establishment of reliable and gen-
eralizable cutoffs for plasma p-tau217. Additionally, the Aβ
prevalence in our sample was slightly higher than in the gen-
eral cognitively unimpaired population, suggesting the need
for validation in more diverse samples.

Conclusions
The findings in this study support the clinical utility of plasma
p-tau217 as a stand-alone tool for identifying preclinical AD but
suggest that confirmatory CSF or PET test in those with ab-

Plasma P-Tau217 to Identify Preclinical AD Original Investigation Research

jamaneurology.com (Reprinted) JAMA Neurology Published online September 15, 2025 E9

Downloaded from jamanetwork.com by guest on 10/30/2025

https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2025.3217?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2025.3217
http://www.jamaneurology.com?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2025.3217


normal p-tau217 would further improve the PPV in many clini-
cal scenarios. The latter 2-step approach may streamline ac-
curate identification of individuals with preclinical AD. The use
of plasma p-tau217 as a stand-alone tool or as part of a 2-step

approach will reduce resource demands, and minimize un-
necessary burdensome PET or CSF procedures, ultimately ac-
celerating the development and implementation of early-
stage AD therapeutics.
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